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A B S T R A C T

To mitigate the growing threat of urban heat, cities are implementing greening strategies such as tree planting or 
the development of parks. Effectively integrating these solutions into planning requires quantitative information 
on the cooling effect of urban vegetation. Here we examined the performance of an open-source decision-support 
tool, the Integrated Valuation of Ecosystem Services and Tradeoffs Urban Cooling model, to estimate the cooling 
effect and economic benefits from urban vegetation in a tropical city context, using Singapore as an exemplar 
case study. Using observed temperature data, we calibrated the model to estimate the spatial distribution of 
annual average day- and night-time temperature at 10 m spatial resolution and validated the results using leave- 
one-out cross validation. The calibrated models performed well to estimate annual average daily mean and 
maximum (day), and minimum (night) temperatures (R2 of 0.78, 0.65, and 0.52, respectively). We estimated that 
urban cooling in Singapore provides economic savings of $47.14 million SGD annually from reduced energy 
consumption in public residential buildings, based on the relationship between energy consumption and mean 
temperature. Our results give confidence in the model as a decision-support tool to estimate urban heat island 
effects and evaluate heat mitigation strategies in tropical cities.

1. Introduction

Mitigating urban heat is a growing priority in cities. Urban areas are 
frequently warmer than non-urban surrounds, known as the urban heat 
island (UHI) effect (Chakraborty & Lee, 2019; Manoli et al., 2019). 
Urban heat islands are caused by changes to the energy balance in cities, 
primarily due to altered surface morphology and the replacement of 
vegetation with artificial, impervious surfaces (Oke, 1982; Rizwan et al., 
2008). Increased urban temperatures have health and economic im
pacts, increasing morbidity and mortality, reducing workplace produc
tivity and increasing energy and water demand (Nazarian et al., 2022). 
Given the increasing frequency and severity of extreme heat due to 
global climate change (IPCC, 2023) and ongoing urbanisation (United 
Nations, 2019), reducing UHIs is a key strategy to manage the growing 
risks posed by extreme heat. Yet many cities still lack the spatially 
explicit data and modelling tools required to implement effective heat 
mitigation, especially in data poor, and densely populated cities across 

the tropics (Hamel et al., 2021).
Strategies to mitigate UHIs range from building- and neighborhood- 

level, to city-wide measures (Jamei et al., 2020; Wong et al., 2021; 
Aydin et al., 2024). Increasing the albedo of building and road surfaces, 
for example, helps to reflect heat, whilst the orientation of streets and 
buildings can be designed to maximise ventilation and shading (Goh & 
Chang, 1999; Jamei et al., 2020). Meanwhile, policies aiming to reduce 
car usage by promoting public transport can reduce anthropogenic heat 
emissions, which can be a considerable contributor to UHIs (Degirmenci 
et al., 2021). One of the most effective strategies to mitigate UHIs, 
however, is urban greening (Wong et al., 2021). Vegetation lowers 
temperature by means of shading, evapotranspiration, and increased 
albedo. Tree canopies intercept solar radiation, blocking shortwave and 
longwave radiation from reaching the ground (Gunawardena et al., 
2017). Vegetated surfaces also tend to have a higher albedo than arti
ficial surfaces (compared to asphalt, for example), decreasing the pro
portion of incoming radiation that is absorbed, whilst transpiration 
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converts solar radiation into latent heat (Wong et al., 2021). The 
mechanisms through, and the extent to which urban greenery reduces 
temperature is, however, dependent on prevailing climatic conditions 
and local biophysical context (Gunawardena et al., 2017; Wong et al., 
2021). Urban greenery also provides other ecosystem services including 
reducing air pollution (Selmi et al., 2016) and stormwater runoff 
(Donovan et al., 2016; Soulis et al., 2017), as well as providing recrea
tional opportunities which benefit residents physical and mental health 
(Jim & Chen, 2006).

Yet the planning and implementation of urban green spaces to 
maximise urban heat mitigation is still prohibited by a lack of spatially 
explicit data and decision-support tools (Hamel et al., 2021; Oukawa 
et al., 2025). Remote-sensed surface temperature provides spatially 
explicit information and is a good indicator of UHI intensity (Ramsay 
et al., 2022; Zhang et al., 2024). However, surface temperature is not 
always well correlated with air temperature and is therefore less rele
vant when considering the impacts of urban heat on human health 
(Venter et al., 2021). Moreover, the availability of remote-sensed data is 
limited by cloud cover, especially for tropical cities (Zhou et al., 2018). 
Numerical modelling approaches are often computationally expensive 
and have high data requirements either as inputs (Meili et al., 2020; 
Mughal et al., 2020), or to train models (Venter et al., 2020). Simpler 
models, such as those estimating statistical relationships between land 
cover and temperature (e.g., Masoudi & Tan, 2019; Zhang & Yuan, 
2023), are not typically transferable between cities (Pena Acosta et al., 
2023) and do not explicitly represent the biophysical processes of 
cooling from vegetation (Bartesaghi Koc et al., 2018).

Further, these approaches lack the flexibility (e.g., in scale and in 
data requirements) required by urban planners and policy makers, nor 
do they quantify outputs in terms of economic or health indicators 
relevant to policy making and planning (Hamel et al., 2021). The Inte
grated Valuation of Ecosystem Services and Tradeoffs (InVEST®) models 
aim to fill these gaps by providing open-source models with minimal 
data requirements to quantify the benefits provided by natural ecosys
tems (Natural Capital Project, 2024). The InVEST Urban Cooling model 
quantifies the heat mitigation benefits from urban vegetation and esti
mates the subsequent economic savings of reduced energy consumption 
(Bosch et al., 2021a; Hamel et al., 2021). The model has been applied to 
assess the cooling capacity of vegetation in England (Zawadzka et al., 
2021) and Milan, Italy (Ronchi et al., 2020), and to compare future 
greening scenarios in Nagpur City, India (Kadaverugu et al., 2021); 
Wuhan, China (Hu et al., 2023) and Lausanne, Switzerland (Bosch et al., 
2021b). The model parameters have been calibrated for Lausanne 
(Bosch et al., 2021a); Paris, France,the Twin Cities, United States 
(Hamel et al., 2024) and Busan, Korea (Chung et al., 2024). To our 
knowledge, the model parameters have not been calibrated, nor the 
performance validated, for a tropical city. In addition, past studies have 
not examined the salience and applicability of the economic valuation 
component of the model.

Here we address the need for a simple decision-support tool to sup
port urban heat mitigation in tropical cities and fill key knowledge gaps 
in the calibration and economic valuation components of the InVEST 
Urban Cooling model. We do so by assessing the performance of the 
Urban Cooling model to estimate the spatial distribution of urban air 
temperatures and evaluate the cooling potential of urban greenery and 
its economic implications, using Singapore as an exemplar case study. 
We calibrate and validate the model using observed temperature data 
and quantify the estimated economic benefits of urban cooling from 
reduced energy consumption. In doing so, we aim to address key 
knowledge gaps in the application of the model to tropical cities and 
provide confidence in the application of the model as an urban planning 
and decision-support tool. We provide calibrated model parameters that 
can be applied to other tropical cities.

2. Methods

2.1. Study area

Singapore (Fig. 1) is an island city-state located on the southern tip of 
the Malaysian Peninsula with an equatorial wet climate (Roth & Chow, 
2012). Despite its small geographical extent (719.2 km2), Singapore has 
one of highest population densities in the world, with a population of 
nearly 5.69 million people (as of 2020) equating to 7485 people per 
square kilometer (Department of Statistics Singapore, 2020). As a result, 
dense urbanisation has caused considerable UHI effects which have 
expanded with ongoing urban development (Roth & Chow, 2012). 
However, Singapore employs innovative urban greening strategies, 
presenting it as an interesting case study of compact and green cities 
(Tan et al., 2013; Friess, 2016; McDonald et al., 2023).

2.2. Overview of the InVEST Urban Cooling model

The InVEST Urban Cooling model (V3.1.4.0; Natural Capital Project, 
2024) estimates daytime urban cooling for each pixel in a land cover 
raster as a linear function of shade, evapotranspiration and albedo, 
specified for each land cover class, which represent differences in 
vegetation structure and canopy cover. It additionally accounts for the 
cooling effects of large green spaces (> 2 ha) and spatial air mixing. To 
simulate nighttime conditions, urban cooling is computed as a function 
of building intensity (the ratio of building floor area to footprint area) to 
represent longwave radiation released by buildings in the form of sen
sible heat.

Based on the above cooling mechanisms, urban air temperatures are 
estimated between a rural reference temperature and the maximum UHI 
observed over the city, which are input based on the temporal period of 
interest. The model outputs retain the same spatial resolution as the 
input land cover data. The model is detailed in Bosch et al. (2021a) and 
in the user guide (Natural Capital Project, 2024).

The weighting of the cooling effects of shade, evapotranspiration and 
albedo; the distance over which large green spaces have a cooling effect 
and the radius over which air mixing is computed can be defined based 
on local context (Hamel et al., 2024). Previous work has focused on the 
development of a calibration tool to derive these parameters based on 
local data (Bosch et al., 2021a). Here we use this tool to systematically 
calibrate these parameters for a tropical climate, using Singapore as a 
case study.

2.3. Land cover and biophysical data

The primary data inputs for this study include land cover data with 
biophysical information for each land cover class and observed tem
perature data to calibrate and validate the estimated temperature out
puts. Land cover data for Singapore were sourced from a previously 
published work (Gaw et al., 2019), which classified land cover based on 
high-resolution satellite imagery at 0.3 by 0.3 m spatial resolution. We 
resampled the land cover raster to 10 m resolution and reclassified the 
built-up land cover class to low- (< 10 m), mid- (10–25 m) and high-rise 
(> 25 m), to account for differences in building density and morphology, 
following the local climate zone classification scheme (Stewart & Oke, 
2012; Fig. 1). A spatial resolution of 10 m was chosen to capture vari
ation in urban land cover, including roads, urban greenery and build
ings, whilst maintaining computational efficiency.

We assigned all vegetation classes with canopy cover a shade pro
portion of one (Table S1). To account for shade provided by buildings we 
computed the inverse of the mean sky view factor given for each built-up 
class in the local climate zone classification scheme (Stewart & Oke, 
2012). Albedo was calculated as the mean of 83 cloud masked Landsat 8 
surface reflectance images collected between 2015 and 2018, to match 
the temporal period of the land cover data (Tahooni et al., 2023; Tasumi 
et al., 2008), and the mean was calculated for each land cover class 
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(Table S1). The evapotranspiration coefficient for each class was 
assigned following previous literature (Allen et al., 1998). Reference 
evapotranspiration was obtained from the Global Aridity Index and 
Potential Evapotranspiration Climate Database v2 (Trabucco & Zomer, 
2019), which provides global raster climate data at the spatial resolution 
of 1 km based on data between 1970 and 2000 following a 
Penman-Monteith Reference Evapotranspiration Equation.

2.4. Model calibration and validation

To calibrate the model parameters (shade, albedo and evapotrans
piration weights, cooling distance of large green spaces and air mixing 
distance) for a tropical city context we used an automated algorithm 
based on simulated annealing optimisation, described in previous work 
(Bosch et al., 2021a; Hamel et al., 2024). Simulated annealing optimi
sation is an efficient method to calibrate multiple parameters whilst 
avoiding convergence at local optima and being robust to stochasticity 
(Kirkpatrick et al., 1983). The calibration algorithm begins with an 
initial simulation using the default InVEST parameters (Table 2) and 
converges on a solution which maximises R2 between estimated and 
observed air temperature (Bosch et al., 2021a)

We calibrated the model using a dataset of hourly microclimate 
temperature measurements collected at 27 locations across Singapore 
(Fig. 1) using 88 Thermocron iButtons (DS1921G-F5#) from January 
2017 to January 2018 (Richards et al., 2020). These data were collected 
to capture variation in the cooling potential of vegetation across 
Singapore (Richards et al., 2020) and are thus particularly suitable to 
calibrate the Urban Cooling model parameters which represent the 
biophysical processes of cooling from vegetation.

We averaged hourly temperature measurements within each of the 
27 clusters (1–4 sensors per cluster), and calculated the daily mean, 5th 
and 95th percentile temperature for each cluster. We used the 5th 
percentile to represent minimum and the 95th to represent maximum 
temperature as microclimate sensors can be prone to error, for example, 
from incident solar radiation (Maclean et al., 2021).

To test the model’s ability to simulate the spatial distribution of 
temperature averaged over one year, we computed the annual average 
daily mean and maximum (to represent daytime conditions), and min
imum (to represent nighttime) temperature for each cluster in 2017. 
Singapore is a densely urbanised city, precluding direct comparisons of 
rural and urban temperature observations (Chow & Roth, 2006). 
Therefore, we set the rural reference temperature to the cluster with the 

lowest annual average temperature, and the maximum UHI to the dif
ference between this and the cluster with the highest annual average 
temperature. The initial model simulation used the default InVEST pa
rameters (Table 2) and the number of iterations for calibration was set to 
100 (Hamel et al., 2024). The calibration algorithm was run between 
four and six times for each simulation to test the stability of the cali
brated parameters (Table S2). The final calibration parameters were 
selected based on the highest post-calibration R2.

To validate the air temperature estimates we performed leave-one- 
out cross validation (LOOCV) by calibrating the model 27 times, leav
ing out one observed temperature datapoint each time. We then calcu
lated the LOOCV R2 based on how well the model predicted the left-out 
data point in each calibration. Finally, we computed the R2, mean ab
solute error (MAE) and root mean square error (RMSE) between 
observed and estimated temperature of the final calibrated model 
(calibrated using all 27 observed temperature locations) and the model 
pre-calibration. The LOOCV method is useful in cases such as this where 
there are limited data for model testing which therefore cannot not be 
split into independent calibration and validation datasets.

2.5. Economic valuation

We estimated the economic benefits of urban cooling based on en
ergy savings associated with lower temperatures, primarily due to 
reduced air conditioning consumption (Santamouris et al., 2015). We 
estimated economic savings for public residential buildings built by the 
Housing & Development Board of Singapore, for which shapefiles of 
building footprints were publicly available. Building footprints were 
obtained from Singapore’s open data collective (data.gov.sg) and 
filtered to include only residential buildings and those built prior to 
2018.

First, we estimated the relationship between monthly energy con
sumption for public residential buildings (Energy Market Authority of 
Singapore, 2023) and monthly average mean, minimum and maximum 
temperatures between 2016 and 2018 (derived as the average across 20 
Meteorological Service Singapore stations; MSS, 2024) using univariate 
linear regression models. Second, we divided the coefficient of the best 
fitting model (mean temperature, in this case; Fig. S1) by the total 
footprint area of public residential buildings to obtain a parameter for 
the increase in monthly energy consumption, per degree Celsius increase 
in temperature, per square meter of building footprint (2.56 kWh/ 
◦C/m2). We also calculated this parameter for the 5 and 95 % confidence 

Fig. 1. Land cover (adapted from Gaw et al., 2019) and temperature monitoring sites in Singapore.
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intervals (CIs) of the relationship between energy consumption and 
temperature (5 % CI = 1.53 kWh/ ◦C/m2; 95 % CI = 3.60 kWh/ ◦C/m2)

The Urban Cooling model uses this parameter to estimate the eco
nomic savings associated with cooling from vegetation, at the building 
level, in comparison to a scenario of no vegetation (i.e. maximum urban 
heat island; Tairmax) (Natural Capital Project, 2024). Therefore, eco
nomic savings are calculated as follows, where Tair is the mean estimated 
temperature of the building footprint: 

Economic savings = 2.56 ∗ (Tairmax − Tair) ∗ footprint ∗ cost 

We estimated monthly energy savings for each building using the 
calibrated Urban Cooling model for mean temperature and multiplied 
these by 12 to obtain annual savings (we followed the same procedure 
using the 5 and 95 % CI parameters to quantify the uncertainty of this 
estimate). We calculated economic savings based on the average cost of 
electricity in 2017 of 20.7 cents/kWh (Energy Market Authority of 
Singapore, 2023), and summed savings across all buildings.

3. Results

3.1. Model performance

The InVEST Urban Cooling model estimated annual average tem
perature over Singapore with good accuracy when compared with 
observed temperature data. The model for mean temperature had the 
strongest performance (LOOCV R2 = 0.78), although there was no 
change in R2 and only a minor decrease in error statistics after calibra
tion (Table 1). In contrast, the models for maximum and minimum 
temperature performed slightly worse (LOOCV R2 0.65 and 0.52 post- 
calibration, respectively), but improved after calibration (Table 1). 
Both mean and maximum temperature models had MAE < 0.3 ◦C and 
RMSE < 0.4 ◦C, indicating good accuracy for day-time simulations 
(Table 1). The model for minimum temperature captured the variation 
in temperature well (R2 = 0.52), but underestimated the magnitude of 
temperature, with much higher MAE of 0.844 ◦C and RMSE of nearly 1 
◦C (Table 1; Fig. 2).

The calibrated parameters for the distance over which large green 
spaces have a cooling effect and the distance over which air mixing 
occurs were most different from the default (Table 2). The distance over 
which large green spaces have a cooling effect was considerably larger in 
the minimum temperature model (419 m), and considerably smaller in 
the maximum temperature model (44 m). The calibrated air mixing 
distance was smaller than the default parameter (500 m) for all three 
models, with the most significant change for maximum temperature (38 
m). The weights of shade, albedo and evapotranspiration for the daytime 
models (mean and maximum temperature) were not substantially 
changed by the calibration, although the weighting of shade was 
decreased in the maximum temperature model (Table 2). The calibrated 
parameters for each model remained relatively stable between inde
pendent calibration runs, although there was more variation in the 
calibrated parameters for minimum and maximum temperatures 
(Table S2).

3.2. Energy savings and economic value of vegetation

Monthly energy consumption in public residential buildings in 

Singapore had the strongest relationship with monthly mean tempera
ture (β = 28,500,696, p < 0.001, R2 = 0.40; Fig. S1). Based on this 
relationship, urban cooling (Fig. 3) across all public residential buildings 
(total footprint area 11,126,692 m2) reduced annual energy consump
tion by 228 GWh, equating to annual economic savings of $47.14 
million SGD (95 % CIs: $28.17 million; $66.23 million).

4. Discussion

4.1. Model performance

Here we show that the InVEST Urban Cooling model performed well 
at estimating annual average temperatures in Singapore, providing 
confidence in the model as a decision-support tool. The model estimated 
annual average mean temperature with the highest accuracy (R2 =

0.78), followed by maximum (R2 = 0.65) and minimum (R2 = 0.52). The 
high R2 for all models supports their use for estimating spatial variation 
in temperature (i.e. capturing urban heat island effects), in agreement 
with previous applications of the model in temperate cities (Bosch et al., 
2021a; Hamel et al., 2024). The accuracy of our models when compared 
with observed air temperature (MAE 0.29–0.84 ◦C post-calibration) was 
broadly in line with previous work in Singapore which achieved MAE 
between 0.30 and 0.92 ◦C using a more complex Multilayer Urban 
Canopy Model, albeit at a finer scale temporal resolution (Mughal et al., 
2019). Low error statistics (< 0.3 ◦C MAE post-calibration) for mean and 
maximum temperature support the use of the model for estimating the 
magnitude of daytime temperature (when heat stress is of most 
concern), but not nighttime for which the model considerably under
estimated temperature (0.84 ◦C MAE).

In all cases, the calibrated model parameters were different than 
those estimated in previous work for other cities, highlighting the 
importance of local calibration (Table 2). An advantage of the InVEST 
Urban Cooling model is that the biophysical processes of cooling are 
explicitly represented by the model parameters, meaning they can be 
interpreted and verified within the local context (Bosch et al., 2021a). 
Following our systematic calibration, the air mixing distance parameter, 
for example, was estimated to be higher during the day than the night, in 
line with previous research in Singapore (Mughal et al., 2019). Previous 
research in Singapore has also measured the cooling effect of green 
spaces beyond their boundaries, showing cooling extending by up to 500 
m, albeit with much stronger cooling effects closer to the green space 
(Yu & Hien, 2006). This parameter was considerably higher in our 
calibrated model for nighttime temperatures (419 m; Table 2), which 
contributed to lower estimated temperatures compared to in situ mea
surements. The biophysical interpretation of model parameters suggests 
that the optimal values determined for Singapore may be suitable for 
other tropical cities (Table 2), and future work could test this hypothesis 
in the region.

4.2. Economic valuation of vegetation

We estimated that urban cooling in Singapore provides annual eco
nomic savings of $47.14 million SGD through reduced energy usage in 
public residential buildings. To our knowledge, this study is the first to 
demonstrate the applicability of this component of the InVEST Urban 
Cooling model. The economic valuation provides a relatively simple 

Table 1 
Model performance for annual average mean (day), maximum (day) and minimum (night) temperatures based on observed vs estimated temperature, before and after 
calibration. LOOCV: leave-one-out cross validation, MAE: Mean Absolute Error, RMSE: Root Mean Square Error.

R2 MAE ( ◦C) RMSE ( ◦C)

Pre- calibration Post-calibration LOOCV validation Pre-calibration Post- calibration Pre-calibration Post-calibration

Mean 0.80 0.80 0.78 0.294 0.287 0.359 0.345
Maximum 0.63 0.74 0.65 0.370 0.298 0.466 0.380
Minimum 0.52 0.63 0.52 0.862 0.844 0.977 0.990
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method to estimate the economic value of vegetation, a key step in 
producing policy-relevant information.

The simplified approach to economic valuation does, however, have 
some limitations (reflected in the reasonably wide CIs for this estimate). 

First, we estimated the relationship between temperature and energy 
consumption using a simple linear regression. We estimated an increase 
in monthly energy usage of 28.5 GWh per 1 ◦C increase in mean tem
perature, equating to a change of 7.9 % (based on monthly average 

Fig. 2. Performance of the InVEST Urban Cooling model in Singapore. (A) Annual average estimated (maps) and observed (points) temperature over Singapore. (B) 
Estimated vs observed temperature with linear regression line (blue) and 1:1 regression line (dashed).
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public residential energy consumption of 360.8 GWh between 2015 and 
2017; Energy Market Authority of Singapore, 2023). Despite our simple 
approach, this estimate is nearly identical to previous work which 
estimated a 7.8 % change in residential energy usage per 1 ◦C change in 
temperature in Singapore, using more complex time-series modelling 

(Ang et al., 2017).
Second, the model estimates economic savings relative to a baseline 

of no vegetation (or maximum UHI) and does not account for building or 
household-level variation. It assumes that the estimated temperature at 
the footprint of a building applies to all floors, not accounting for 

Table 2 
Default and calibrated InVEST Urban Cooling model parameters for Singapore and other cities.

Study location Temporal period Weight 
Shade

Weight 
Albedo

Weight 
Evapotran-spiration

Cooling distance (m) Air mixing (m)

Default NA 0.6 0.2 0.2 100 500
Singapore Mean (day) 0.57 0.22 0.21 99 389

Max (day) 0.48 0.25 0.27 44 38
Min (night) NA NA NA 419 189

Lausanne, Switzerland (Bosch et al., 2021a) Day 0.59 0.24 0.17 89.21 236.02
Twin Cities, USA (Hamel et al., 2024) Day 0.62 0.21 0.17 109 771

Night NA NA NA 66 630

Fig. 3. Economic valuation of energy savings from urban vegetation in Singapore. (A) Estimated reduction in annual mean temperature provided by vegetation in 
Singapore (compared to maximum urban heat island) showing footprints of public residential buildings. (B) Annual energy savings (kWh) for each building as a 
function of temperature reduction and footprint area.
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vertical variation in temperature, which can be considerable and impact 
energy consumption (Gui et al., 2021; Li et al., 2022). We also limited 
our analysis to one building type, public residential buildings (economic 
savings would be higher across all buildings in Singapore), and did not 
account for variation in the socioeconomic characteristics of households 
(e.g. income) or the number of residents in a household or building. The 
InVEST model can, however, use different parameters for the relation
ship between energy consumption and temperature for different build
ing types, if appropriate data are available (Natural Capital Project, 
2024).

Third, as the InVEST Urban Cooling model estimates air temperature 
based only on the cooling capacity from vegetation, it neglects the 
contribution of anthropogenic heat emissions from air-conditioning 
usage which may exacerbate urban heat, especially in high density 
residential buildings which are common in Singapore (Boehme et al., 
2015). Given these limitations, the economic valuation component of 
the Urban Cooling model represents a good first approximation of the 
energy savings from urban cooling. More complex simulations should be 
used to include anthropogenic heat emissions, specific building mor
phologies and finer temporal resolutions (see for example Litardo et al., 
2020).

4.3. Limitations and future directions

The InVEST Urban Cooling model has some limitations related to the 
simplified representation of the mechanisms of cooling from urban 
vegetation and spatial air mixing (Bosch et al., 2021a; Hamel et al., 
2024). Whilst these simplifications facilitate the broad scale applica
bility of the model, users should consider the potential impacts on model 
outputs. Where detailed biophysical data and technical capability are 
available, users can consider more complex urban heat modelling ap
proaches for fine scale spatial and temporal resolution simulations 
(Tiwari et al., 2021). Such approaches are particularly useful for specific 
case studies such as green roofs and walls which are not easily modelled 
using the Urban Cooling model.

Estimated temperatures are constrained between the input reference 
temperature and maximum UHI before spatial air mixing is computed. 
Estimated temperatures after air mixing are, therefore, lower than the 
maximum UHI, which contributed to our estimated temperatures being 
lower than observed temperatures (Fig. 2). Further, the maximum UHI 
should represent the maximum UHI spatially (i.e. the highest tempera
ture above the rural reference in a city). We estimated the maximum UHI 
as the difference between the minimum and maximum observed tem
perature (spatially), from observations primarily in vegetated areas 
(Richards et al., 2020), meaning that we likely underestimated the 
maximum UHI. This limitation could be alleviated by forcing the 
maximum UHI parameter based on ancillary literature values, although 
capturing the true maximum UHI is difficult given sparse meteorological 
networks in cities, especially in the tropics (Ramsay et al., 2024). 
Deploying temperature sensors networks with the intention of capturing 
maximum urban heat islands in dense built-up areas would allow this 
parameter to be accurately estimated and could be a direction for future 
research.

Further, the model assumes a uniform cooling distance for all large 
green spaces. Observational studies show that the extent and magnitude 
of cooling varies with the size and shape of green spaces, variation in 
surrounding land cover, and the effects of other climatic conditions such 
as wind speed and direction (Lin et al., 2015; Wong et al., 2021). The 
model could be improved by applying a decay function to the cooling 
effect of large green spaces and allowing the distance of cooling to vary 
with characteristics of large green spaces.

There are also limitations pertaining to our calibration of the model 
for tropical cities. Firstly, we calibrated the model using a previously- 
published dataset of microclimate observations in vegetated areas 
(Richards et al., 2020). Future work could calibrate the model using 
different observed temperature datasets (e.g. weather stations vs 

microclimate sensors) and compare performance outcomes. More 
detailed analyses are required to test the ability of the InVEST Urban 
Cooling model to simulate temperature over finer temporal ranges in 
Singapore, such as daily or monthly averages, or over diurnal cycles. 
Urban heat islands can have complex seasonal and diurnal dynamics 
(Chakraborty et al., 2016; Chow & Roth, 2006), which would likely 
result in different calibration outcomes. Singapore, however, has little 
annual variation in temperature with a monthly temperature range of 
less than 2 ◦C (Roth & Chow, 2012), and the cooling effect of vegetation 
is relatively homogenous year-round (Meili et al., 2021), supporting our 
use of annual average daily temperature in this study. Future work could 
also test the ability of the Urban Cooling model to simulate climate 
change scenarios (e.g., by manipulating the reference air temperature 
and maximum urban heat island to reflect expected temperature 
changes).

4.4. Implications for decision-making

Here we demonstrated that the InVEST Urban Cooling model accu
rately estimated the spatial distribution of annual average temperatures 
in Singapore. Such information can be used by decision makers (e.g., 
urban planners, city councils) to identify high-risk neighborhoods 
(Nazarian et al., 2022) and prioritise the locations of new green spaces. 
The calibrated models can also be used to simulate and evaluate 
greening scenarios (e.g. tree planting or development of new parks) and 
estimate the cooling benefits of new greenery, relative to the current 
state (see for example, Bosch et al., 2021b; Hu et al., 2023). In 
Singapore, for example, the model would be highly beneficial to pri
oritise the location of new parks to maximise their cooling benefit, given 
land constraints, or to simulate the configuration of new developments 
(see for example, Tan et al., 2021). Moreover, the InVEST software suite 
includes other ecosystem service models, including carbon sequestration 
and stormwater retention, which can be employed in conjunction with 
the Urban Cooling model to conduct multi-ecosystem service analyses 
(Tan et al., 2021; Natural Capital Project, 2024).

The drivers of UHIs are largely determined by the climatic context of 
a city (Manoli et al., 2019; Yu et al., 2018). Therefore we expect that the 
mechanisms of urban cooling from vegetation would be similar among 
tropical cities and that the model parameters derived here would be 
suitable for model applications in other tropical cities. We do, however, 
recommend that the model parameters be calibrated locally when 
suitable observed temperature data are available. Local calibration can 
capture variation within a city, such as the species composition of urban 
vegetation, which can influence the cooling capacity of urban green 
spaces (Tan et al., 2020). Future research could independently validate 
the Urban Cooling model in a tropical city with different urban mor
phologies and vegetation characteristics.

One of the main advantages of the InVEST models are the minimal 
data requirements. The primary input for the Urban Cooling model is 
land cover data, which are now globally available at 10 m spatial res
olution, or easily derived from remote-sensing data (e.g., Brown et al., 
2022; Zanaga et al., 2021). This means that the model can be readily 
applied in cities with limited in situ data, which include many 
low-income cities across the tropics. The model could also be applied in 
particularly data poor contexts such as urban informal settlements, 
which are especially vulnerable to urban heat, and a growing de
mographic in tropical cities (Ramsay et al., 2024).

5. Conclusion

Here we demonstrated the applicability of the InVEST Urban Cooling 
model to estimate the cooling provided by vegetation and derive asso
ciated economic savings in a tropical city context. Through a systematic 
calibration and validation process we show that the model accurately 
estimates the spatial distribution of annual average air temperatures 
with mean error less than 0.3 ◦C for mean and maximum temperature. 
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We provide calibrated model parameters suitable for a tropical climate 
to facilitate the application of the Urban Cooling model to other tropical 
cities. Our results give confidence in the use of the model as a decision- 
support tool. The model can be applied in other tropical cities, especially 
those with a dearth of in situ data, to support decision making, including 
heat vulnerability mapping and the implementation of nature-based 
solutions.
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